Презентация на тему софизмы. Софизмы

1 слайд

2 слайд

Цели и задачи Целью нашего проекта является всесторонний анализ понятия «софизма», установление связи между софистикой и математикой, влияние софизмов на развитие логики. Мы поставили перед собой задачи: 1. Узнать: что же такое софизм? как найти ошибку во внешне безошибочных рассуждениях? критерии классификации софизмов. 2. Составить сборник задач на софизмы по различным разделам математики для 6-10 классов.

3 слайд

Что такое софизм? Софизм - преднамеренная ошибка, совершаемая с целью запутать противника и выдать ложное суждение за истинное.

4 слайд

Немного из истории софизма Софизмы существуют и обсуждаются более двух тысячелетий, причем острота их обсуждения не снижается с годами.

5 слайд

Немного из истории софизма Возникновение софизмов обычно связывается с философией софистов, которая их обосновывала и оправдывала. Термин “софизм” впервые ввел Аристотель, охарактеризовавший софистику как мнимую, а не действительную мудрость.

6 слайд

Софизм «Мёд» - Скажи, - обращается софист к молодому любителю споров, - может одна и та же вещь иметь какое-то свойство и не иметь его? - Очевидно, нет. - Посмотрим. Мед сладкий? - Да. - И желтый тоже? - Да, мед сладкий и желтый. Но что из этого? - Значит, мед сладкий и желтый одновременно. Но желтый - это сладкий или нет? - Конечно, нет. Желтый - это желтый, а не сладкий. - Значит, желтый - это не сладкий? - Конечно. - О меде ты сказал, что он сладкий и желтый, а потом согласился, что желтый значит не сладкий, и потому как бы сказал, что мед является сладким и не сладким одновременно. А ведь вначале ты твердо говорил, что ни одна вещь не может и обладать и не обладать каким-то свойством.

7 слайд

Софизм «Учеба» The more you study, the more you know The more you know, the more you forget The more you forget, the less you know The less you know, the less you forget The less you forget, the more you know So why study?

8 слайд

9 слайд

Логические ошибки Так как обычно вывод может быть выражен в силлогистической форме, то и всякий софизм может быть сведён к нарушению правил силлогизма.

10 слайд

Терминологические ошибки Неточное или неправильное словоупотребление и построение фразы, более сложные софизмы проистекают из неправильного построения целого сложного хода доказательств, где логические ошибки являются замаскированными неточностями внешнего выражения.

11 слайд

Психологические ошибки Правдоподобность софизма зависит от ловкости того, кто защищает его, и уступчивости оппонента, а эти свойства зависят от различных психологических особенностей обеих индивидуальностей.

12 слайд

Формула успешности софизма Успешность софизма определяется следующей формулой: a + b + c + d + e + f, где (a + с + е) составляет показатель силы диалектика, (b + d + f) есть показатель слабости его жертвы. а - отрицательные качества лица (отсутствие развития способности управлять вниманием). b - положительные качества лица (способность активно мыслить) с - аффективный элемент в душе искусного диалектика d - качества, которые пробуждаются в душе жертвы софиста и омрачают в ней ясность мышления е - категоричность тона, не допускающего возражения, определённая мимика f - пассивность слушателя

13 слайд

«Предмет математики настолько серьёзен, что полезно не упускать случая, делать его немного занимательным», - писал выдающийся ученый XVII века Блез Паскаль.

14 слайд

Сборник задач Алгебраические софизмы Геометрические софизмы Тригонометрические софизмы

15 слайд

Алгебраические софизмы Все числа равны между собой Докажем, что 5=6. Запишем равенство: 35+10-45=42+12-54 Вынесем за скобку общие множители: 5∙(7+2-9)=6∙(7+2-9). Разделим обе части этого равенства на общий множитель (он заключен в скобки): 5∙(7+2-9)=6∙(7+2-9). Значит, 5=6.

16 слайд

Геометрические софизмы Рассмотрим треугольник ABC. Проведем прямую MN параллельно AB так, как показано на рисунке. Теперь для любой точки L стороны AB проведем прямую CL, которая пересечет MN в точке K. Таким образом установим однозначное соответствие между отрезками AB и MN, т.е. они оба содержат одинаковое количество точек. Значит, имеют одинаковую длину.

18 слайд

Заключение Рассмотрев софизмы, мы узнали многое из мира логики. Даже небольшое представление о софизмах значительно расширяет кругозор. Многие вещи, кажущиеся сначала необъяснимыми, выглядят совсем по-иному. Жаль, что в школьном курсе математики не изучаются основы логики. Логическое мышление - ключ к пониманию происходящего, недостаток его сказывается во всем.

СодержаниеВведение
Древние софизмы
Числовые софизмы
Геометрические софизмы
Выводы

Что такое софизм?

Софизм (от греческого sophismaуловка, выдумка, головоломка)- логически
неправильное рассуждение, выдаваемое
за правильное.
Математический софизм- удивительное
утверждение, в доказательстве которого
кроются незаметные, а подчас и довольно
тонкие ошибки.
Эффектная демонстрация явно
неверного доказательства- в этом и
состоит смысл софизма.

Древние софизмы

Где появились софизмы?
В Древней Греции.
Для чего они создавались? С какой
целью?
Появление софизмов заставило
задуматься математиков о
логическом строении геометрии и
арифметики.
Кто придумал математические софизмы?
мудрец Зенон Элейский
в V веке до нашей эры.

Древние софизмы

Древний софизм «Рогатый»
Равен ли полный стакан пустому
Последние годы нашей жизни короче,
чем первые.

Древний софизм «Рогатый»

То, что ты не потерял, то и
имеешь. Ты не потерял рога,
следовательно, ты их имеешь.
Где ошибка?
ответ

Равен ли полный стакан пустому?

Оказывается, что да.
Пусть есть стакан, наполненный водой до
половины.
Тогда стакан, наполовину полный, равен стакану,
наполовину пустому.
Увеличим обе части равенства вдвое, получим, что
стакан полный равен стакану пустому.
=
Где ошибка?
ответ

Последние годы нашей жизни короче, чем первые

Известно изречение: в молодости идет время
медленнее, а в старости скорее. Это изречение
можно доказать математически.
Человек в течение тридцатого года жизни
проживает 1/30 часть своей жизни, в течение
семидесятого -1/70 часть жизни. Очевидно, что
1/30>1/70. Откуда ясно, что последние годы
жизни короче первых.
Не подвела ли математика?
ответ

Числовые софизмы

2=3
5=6
2·2=5
1=0, или уравнение x-a=0
не имеет решения

2=3

Рассмотрим очевидное равенство:
(2-5/2)2=(3-5/2)2
Тогда
(2-5/2)=(3-5/2)
Прибавив к обеим частям равенства по 5/2,
получим
2=3
Где ошибка?
ответы

5=6

Возьмем тождество:
35+10-45=42+12-54
Вынесем за скобки общий
множитель:
5·(7+2-9)=6·(7+2-9)
Разделим обе части на (7+2-9)
Получим 5=6
ответ

2·2=5

Напишем тождество:
4:4=5:5
Вынесем в каждой части общие
множители за скобки:
4·(1:1)=5·(1:1)
Так как 1:1=1, то 4=5, или
2·2=5
ответ

1=0, или уравнение х-а=0 не имеет корней

Дано уравнение x-a=0
Имеем:
(X-A)
0
=
(X-A)
(X-A)
1=0
Так как это равенство неверное, то
исходное уравнение не имеет
корней.
ответ

Геометрические софизмы

Пусть ΔАВСпроизвольный.
Проведем биссектрису
угла В и серединный
перпендикуляр к
отрезку АС.
Точку их пересечения
обозначим М.
Т.к. MD- высота и
медиана в ΔАМС, то он
равнобедренный
и АМ=МС
А
В
м
D
С

Геометрические софизмы

Опустим из точки М
перпендикуляры МЕ и MF на
стороны АВ и ВС
соответственно.
Из равенства треугольников
ВЕМ и ВFМ следует, что
МЕ=MF, ВЕ=BF.
В
E
F
м
А
D
С

Геометрические софизмы

Следовательно,
прямоугольные
треугольники АМЕ и
CMF равны:
у них равны
гипотенузы (АМ и МС)
и катеты (ME и MF)
значит AE=CF.
Итак, АЕ=СF, BE=BF
Следует, что AB=BC.
Возник парадокс: все
треугольники
равнобедренные
В
E
F
м
А
D
C

Геометрические софизмы

Ошибка в чертеже. Правильный
чертеж:
В
E
А
F
D
M
С

Выводы:

1.
2.
3.
познакомились с понятием
математические софизмы;
научились искать замаскированные
ошибки;
осознали:
важность правильных, корректных
записей и чертежей
недопустимость выполнения запрещенных
действий
важность учета применимости теорем,
формул и правил.

Ответы «Рогатый»

Ошибка здесь состоит в неправильном
переходе от общего правила к частному
случаю, который этим правилом не
предусмотрен.
Действительно, то, что ты не потерял,
подразумевает под словом «то» - все,
что ты имеешь, и ясно, что в него не
включены «рога».
Поэтому заключение «ты имеешь рога»
неправомерно.
назад

«Равен ли полный стакан пустому»

Приведенное рассуждение
неверно, так как в нем
применяется неправильное
действие: увеличение вдвое. В
данной ситуации его
применение бессмысленно.
назад

Ответ. «Последние годы нашей жизни короче, чем первые»

Действительно, 1/30>1/40>1/50.
Но неверно утверждение, что в
течение тридцатого года человек
проживает 1/30 часть жизни, он
проживает 1/30 только той части
жизни, которую он к этому моменту
прожил, но именно части, а не всей
жизни. Нельзя сравнивать между
собой части различных отрезков
времени.
назад

2=3

Если (2-5/2)2=(3-5/2)2, то
правильным следствием
должно быть
Ι2-5/2Ι=Ι3-5/2Ι, откуда следует
Ι-½Ι=Ι½Ι,
а вовсе не равенство 2-5/2=3-5/2
назад

5=6

Ошибка допущена при делении
верного равенства
5·(7+2-9)=6·(7+2-9)
на число (7+2-9), равное нулю.
Этого делать нельзя.
Любое равенство можно делить
только на число,
отличное от нуля!
назад

2·2=5

4:4=5:5
4/4=5/5
Вынесем общие множители:
4·1/4=5·1/5
В результате у нас не образуется общий
множитель, а в предложенном
доказательстве он был получен
вследствие некорректных действий:
4:4=4·(1:1)
назад

Уравнение х-а=0 не имеет корней, или 1=0

Так как х-а – корень
уравнения, то разделив
на (х-а) обе части,
мы потеряли этот корень
и поэтому получили неверное
равенство 1=0.
назад

Песенка, сочинённая английским студентом Чем больше учишься, тем больше знаешь. Чем больше знаешь, тем больше забываешь. Чем больше забываешь, тем меньше знаешь. Чем меньше знаешь, тем меньше забываешь. Но чем меньше забываешь, тем больше знаешь. Так для чего учиться? Не философия, а мечта лентяев!




Цель: изучить данную тему и создать презентацию для использования ее на уроках. Задачи: 1. Дать определение понятиям «софизм» и «парадоксы»; узнать, в чем их отличие. 2. Классифицировать различные виды софизмов и парадоксов. 3. Понять, как найти в них ошибку. 4. Составить компьютерную презентацию


Математический софизм – удивительное утверждение, в доказательстве которого кроются незаметные, а подчас и довольно тонкие ошибки. Особенно часто в софизмах выполняют "запрещенные" действия или не учитываются условия применимости теорем, формул и правил. Математические софизмы Софизм- формально кажущееся правильным, но по существу ложное умозаключение, основанное на неправильном подборе исходных положений (словарь Ожегова)


Парадокс (греч. "пара" - "против", "доска" - "мнение") близок к софизму. Но от него он отличается тем, что это не преднамеренно полученный противоречивый результат.софизму Парадокс - странное, расходящееся с общепринятым мнением, высказывание, а также мнение, противоречащее (иногда только на первый взгляд) здравому смыслу (словарь Ожегова). Математический парадокс – высказывание, которое может быть доказано и как истинна, и как ложь. Парадоксы Парадоксы


В Греции софистами называли и простых ораторов - философов - учителей, задачей которых было научить своих учеников « мыслить, говорить и делать ». Их задачей обычно было научить убедительно защитить любую точку зрения. Парадоксы были типичными способами постановки вопроса в античном мышлении. За свою историю математика испытала три сильнейших потрясения, три кризиса, которые касались ее основ. И все три сопровождались обнаружением парадоксов. А теперь немного истории…






« Два неодинаковых натуральных числа равны между собой » решим систему двух уравнений Сделаем это подстановкой у из 2- го уравнения в 1, получаем х +8- х =6, откуда 8=6 Где ошибка Уравнение (2) можно записать как х +2 у =8, так что исходная система запишется в виде: Х +2 у =6, Х +2 у =8 В этой системе уравнений коэффициенты при переменных одинаковы, а правые части не равны между собой, из этого следует, что система несовместна, т. е. не имеет ни одного решения. Графически это означает, что прямые у =3- х /2 и у =4- х /2 параллельны и не совпадают. Перед тем, как решать систему линейных уравнений, полезно проанализировать, имеет ли система единственное решение, бесконечно много решений или не имеет решений вообще.


« Уравнение x-a=0 не имеет корней » « Уравнение x-a=0 не имеет корней » Дано уравнение x-a=0. Разделив обе части этого уравнения на x-a, получим, что 1=0. Поскольку это равенство неверное, то это означает, что исходное уравнение не имеет корней. Где ошибка? Поскольку x=a – корень уравнения, то, разделив на выражение x-a обе его части, мы потеряли этот корень и поэтому получили неверное равенство 1=0.


0, что: a + c = b умножим обе части на (a b), имеем: (a + c)(a b) = b(a b) a 2 + ca ab cb = ba b 2 cb переносим вправо, имеем: a 2 + c" title="« Все числа равны между собой » « Все числа равны между собой ». возьмём числа a 0, что: a + c = b умножим обе части на (a b), имеем: (a + c)(a b) = b(a b) a 2 + ca ab cb = ba b 2 cb переносим вправо, имеем: a 2 + c" class="link_thumb"> 12 « Все числа равны между собой » « Все числа равны между собой ». возьмём числа a 0, что: a + c = b умножим обе части на (a b), имеем: (a + c)(a b) = b(a b) a 2 + ca ab cb = ba b 2 cb переносим вправо, имеем: a 2 + ca ab = ba b 2 + cb a(a + c b) = b(a b + c) отсюда a = b Где ошибка? По определению: a + c = b Значит, a + c b = 0 И выражение a(a + c b) = b(a + c b) Тождественно a 0 = b 0. 0, что: a + c = b умножим обе части на (a b), имеем: (a + c)(a b) = b(a b) a 2 + ca ab cb = ba b 2 cb переносим вправо, имеем: a 2 + c"> 0, что: a + c = b умножим обе части на (a b), имеем: (a + c)(a b) = b(a b) a 2 + ca ab cb = ba b 2 cb переносим вправо, имеем: a 2 + ca ab = ba b 2 + cb a(a + c b) = b(a b + c) отсюда a = b Где ошибка? По определению: a + c = b Значит, a + c b = 0 И выражение a(a + c b) = b(a + c b) Тождественно a 0 = b 0."> 0, что: a + c = b умножим обе части на (a b), имеем: (a + c)(a b) = b(a b) a 2 + ca ab cb = ba b 2 cb переносим вправо, имеем: a 2 + c" title="« Все числа равны между собой » « Все числа равны между собой ». возьмём числа a 0, что: a + c = b умножим обе части на (a b), имеем: (a + c)(a b) = b(a b) a 2 + ca ab cb = ba b 2 cb переносим вправо, имеем: a 2 + c"> title="« Все числа равны между собой » « Все числа равны между собой ». возьмём числа a 0, что: a + c = b умножим обе части на (a b), имеем: (a + c)(a b) = b(a b) a 2 + ca ab cb = ba b 2 cb переносим вправо, имеем: a 2 + c">


Арифметика - (греч. arithmetika, от arithmys число), наука о числах, в первую очередь о натуральных (целых положительных) числах и (рациональных) дробях, и действиях над ними. Так что же такое арифметические софизмы? Арифметические софизмы – это числовые выражения, имеющие неточность или ошибку, не заметную с первого взгляда.


« Дважды два - пять » Напишем тождество 4:4=5:5. Вынесем из каждой части тождества общие множители за скобки, получаем: 4(1:1)=5(1:1) или Так как 1:1=1, то сократим и получим Где ошибка? Ошибка сделана при вынесении общих множителей 4 из левой части и 5 из правой. Действительно, 4:4=1:1, но 4:44(1:1).


« Пять равно шести » Возьмем тождество = В каждой части вынесем за скобки общий множитель: 5(7+2-9)=6(7+2-9). Теперь, получим, что 5=6. Где ошибка? Ошибка допущена при делении верного равенства 5(7+2-9)=6(7+2-9) на число 7+2-9, равное 0. Этого нельзя делать. Любое равенство можно делить только на число, отличное от 0.


« Один рубль не равен ста копейкам » « Один рубль не равен ста копейкам » Известно, что любые два равенства можно перемножить почленноее, не нарушая при этом равенства, т. е. если а = b и c = d, то ac = bd. Применим это положение к двум очевидным равенствам: 1 рубль = 100 копейкам и 10 рублей = 1000 копеек Перемножая эти равенства почленноее, получим 10 рублей = копеек и разделив последнее равенство на 10, получим, что 1 рубль = копеек Таким образом, один рубль не равен ста копейкам.














Парадокс « Разность квадратов » Парадокс « Разность квадратов » 1) а²-а² = а²-а² - имеем равенство 2) а(а-а) = (а+а)(а-а) – в первой части вынесем общий множитель за скобки, а во второй воспользуемся формулой 3) а = а+а – сократим на общий множитель (а-а) 4) а = 2 а.


Анкетирование 1. Укажите ваш пол. 2. Знакомы ли вам понятия математический « софизм » и « парадокс »? 3. Если, отвечая на предыдущий вопрос, вы ответили положительно, постарайтесь дать определения этих понятий. 4. Приводились ли примеры софизмов и парадоксов на уроках математики? (Ответ при условии положительного ответа на предыдущий вопрос) 5. Хотели бы вы больше узнать о математических парадосках и софизмах?




Заключение Я познакомился с увлекательной темой, узнал много нового, научился решать задачки на софизмы, находить в них ошибку, разбираться в парадосках. Тема моей работы далеко не исчерпана. Я рассмотрел лишь некоторые, самые известные примеры софизмов и парадоксов. На самом деле их намного больше. Развитая логика мышления поможет не только в решении каких - нибудь математических задач, но еще может пригодиться в жизни.


Литература 1. Lietzman W. Wo steckt der Fehler? Mathematische Trugschlüsse und Warnzeichen. – Leipzig? Аменицкий Н. Математические развлечения и любопытные приемы мышления. – М., Богомолов С. А. Актуальная бесконечность. – М.; Л., Больцано Б. Парадоксы бесконечного. – Одесса, Брадис В. М., Харчева А. К. Ошибки в математических рассуждениях. – М., Горячев Д. Н., Воронец А. М. Задачи, вопросы и софизмы для любителей математики. – М., Литцман В., Трир Ф. Где ошибка? – СПб., Лямин А. А. Математические парадоксы и интересные задачи. – М., Мадера А. Г., Мадера Д. А. Математические софизмы. – М.: Просвещение, Обреимов В. И. Математические софизмы. – 2- е изд. – СПб., 1889.



Данилов Дмитрий, учащийся 8 класса

Исследовательская работа. Дается определение софизма, описывается историческая справка, разбираются различные софизмы: арифметические, алгебраические, геометрические и другие.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

МОУ «ООШ с.Мавринка Пугачевского района Саратовской области» Исследовательская работа на муниципальной научно-практической конференции «Шаг в будущее» МАТЕМАТИЧЕСКИЕ СОФИЗМЫ ВЫПОЛНИЛ: учащийся 8 класса Данилов Дмитрий РУКОВОДИТЕЛЬ: учитель математики Меренкова Людмила Александровна

Цель моей работы - доказать, что софизмы являются не просто интеллектуальным мошенничеством, а важным двигателем человеческой мысли. Показать практическое применение, их актуальность и в наше время. Задачи: Рассмотреть математические, алгебраические, геометрические софизмы с точки зрения их важности для изучения математики. Попытаться найти ошибки в представленных софизмах. Показать софизмы из жизни и современной практики.

Введение. Мозги обязаны трудиться Софизмами принято называть утверждения, в доказательствах которых кроются незаметные, а подчас и довольно тонкие ошибки. В любой области математики - от простой арифметики до современных, более сложных областей – есть свои софизмы. В лучших из них рассуждения с тщательно замаскированной ошибкой позволяют приходить к самым невероятным заключениям. Ошибкам в геометрических доказательствах Евклид посвятил целую книгу, но до наших дней она не дошла, и нам остаётся лишь гадать о том, какую невосполнимую утрату понесла из-за этого элементарная математика. Разбор софизмов, прежде всего, развивает логическое мышление, т.е. прививает навыки правильного мышления. Обнаружить ошибку в софизме - это значит осознать ее, а осознание ошибки предупреждает от повторения ее в других математических рассуждениях. Развитие критического мышления позволит не только успешно освоить точные науки, но и не оказаться жертвой мошенников в жизни. Например, при оформлении кредита в банке не оказаться пожизненным его должником. Думаю, многие хотя бы раз в жизни слышали подобные высказывания: «Все числа равны» или «два равно трём». Таких примеров может быть очень много, но что же это значит? Кто это придумал? Можно ли как-то объяснить эти высказывания или всё это – вымысел? На эти вопросы и на многие другие я хочу ответить в своей работе. Существуют различные софизмы: логические, терминологические, психологические, математические и т.д.

ПОНЯТИЕ «СОФИЗМ» Софизм – (от греческого sophisma , «мастерство, умение, хитрая выдумка, уловка») - умозаключение или рассуждение, обосновывающее какую-нибудь заведомую нелепость, абсурд или парадоксальное утверждение, противоречащее общепринятым представлениям. Софизм, в отличие от паралогизма, основан на преднамеренном, сознательном нарушении правил логики. Каким бы ни был софизм, он всегда содержит одну или несколько замаскированных ошибок. Математический софизм – удивительное утверждение, в доказательстве которого кроются незаметные, а подчас и довольно тонкие ошибки. История математики полна неожиданных и интересных софизмов, разрешение которых порой служило толчком к новым открытиям. Математические софизмы приучают внимательно и настороженно продвигаться вперед, тщательно следить за точностью формулировок, правильностью записи чертежей, за законностью математических операций. Очень часто понимание ошибок в софизме ведет к пониманию математики в целом, помогает развивать логику и навыки правильного мышления. Если нашел ошибку в софизме, значит, ты ее осознал, а осознание ошибки предупреждает от ее повторения в дальнейших математических рассуждениях. Софизмы не приносят пользы, если их не понимать.

ЭКСКУРС В ИСТОРИЮ Софистами называли группу древнегреческих философов 4-5 века до н.э., достигших большого искусства в логике Наиболее известна деятельность старших софистов, к которым относят Протагора из Абдеры, Горгия из Леонтип, Гиппия из Элиды и Продика из Кеоса. . Аристотель называл софизмом «мнимые доказательства», в которых обоснованность заключения кажущаяся и обязана чисто субъективному впечатлению, вызванному недостаточностью логического анализа. . Убедительность на первый взгляд многих софизмов, их «логичность» обычно связана с хорошо замаскированной ошибкой: подмена основной мысли (тезиса) доказательства, принятие ложных посылок за истинные, несоблюдение допустимых способов рассуждения (правил логического вывода), использование «неразрешённых» или даже «запрещённых» правил или действий, например деления на нуль в математических софизмах.

АРИФМЕТИЧЕСКИЕ СОФИЗМЫ Арифметика - (греч. arithmetika , от arithmys - число), наука о числах, в первую очередь о натуральных (целых положительных) числах и (рациональных) дробях, и действиях над ними. Так что же такое арифметические софизмы? Арифметические софизмы – это числовые выражения, имеющие неточность или ошибку, не заметную с первого взгляда. 1. « Если А больше В, то А всегда больше, чем 2В» Возьмем два произвольных положительных числа А и В, такие, что А>В. Умножив это неравенство на В, получим новое неравенство АВ>В*В, а отняв от обеих его частей А*А, получим неравенство АВ-А*А>В*В-А*А, которое равносильно следующему: А(В-А)>(В+А)(В-А). (1) После деления обеих частей неравенства (1) на В-А получим, что А>В+А (2), А прибавив к этому неравенству почленно исходное неравенство А>В, имеем 2А>2В+А, откуда А>2В. Итак, если А>В, то А>2В. Это означает, к примеру, что из неравенства 6>5 следует, что 6>10. Где же ошибка???

2. «Число, равное другому числу, одновременно и больше, и меньше его». Возьмем два произвольных положительных равных числа А и В и напишем для них следующие очевидные неравенства: А>-В и В>-В. (1) Перемножив оба этих неравенства почленно, получим неравенство А*В>В*В, а после его деления на В, что вполне законно, ведь В>0, придем к выводу, что А>В. (2) Записав же два других столь же бесспорных неравенства В>-А и А>-А, (3) Аналогично предыдущему получим, что В*А>А*А, а разделив на А>0, придем к неравенству А>В. (4) Итак, число А, равное числу В, одновременно и больше, и меньше его. Где ошибка???

3. «2+2=5» Чтобы доказать, что 2+2=5 , можно всего лишь доказать, что 4=5 Начнём с равенства: 16-36=25-45 Прибавим к обеим частям 20,25 , получим: 16-36+20,25=25-45+20,25 Заметим, что в обеих частях равенства можно вывести полный квадрат: 4²-2*4*4,5+4,5²=5²-2*5*4,5+4,5² Получим:: (4-4,5)²=(5-4,5)² Извлекаем корень из обеих частей равенства, получим: 4-4,5=5-4,5 4=5 что и требовалось доказать.

4.«Дважды два равно пяти» Обозначим 4=а, 5=b, (a+b)/2=d. Имеем: a+b=2d, a=2d-b, 2d-a=b. перемножим два последних равенства по частям. Получим: 2da-a 2 =2db-b 2 . Умножим обе части получившегося равенства на –1 и прибавим к результатам d 2 . Будем иметь: a 2 -2da+d 2 =b 2 -2bd+d 2 , или (a-d)(a-d)=(b-d)(b-d), откуда a-d=b-d и a=b , т.е. 2*2=5 Где ошибка???

5. «Пропавший рубль» Три подруги зашли в кафе выпить по чашке кофе. Выпили. Официант принес им счет на 30 рублей. Подруги заплатили по 10 рублей и вышли. Однако хозяин кафе почему-то решил, что поданный на этот столик кофе стоит 25 рублей, и велел вернуть посетительницам 5 рублей. Официант взял деньги и побежал догонять подруг, но пока бежал, подумал, что им будет трудно делить на троих 5 рублей, и поэтому решил отдать им по 1 рублю, а два рубля оставить себе. Так и сделал. Что же получилось? Подруги заплатили по 9 рублей. 9*3=27 рублей, да два рубля осталось у официанта. А где еще 1 рубль?

АЛГЕБРАИЧЕСКИЕ СОФИЗМЫ Алгебра - один из больших разделов математики, принадлежащий наряду с арифметикой и геометрией к числу старейших ветвей этой науки. Задачи, а также методы алгебры, отличающие её от других отраслей математики, создавались постепенно, начиная с древности. Алгебра возникла под влиянием нужд общественной практики, в результате поисков общих приёмов для решения однотипных арифметических задач. Приёмы эти заключаются обычно в составлении и решении уравнений. Т.е. алгебраические софизмы – намеренно скрытые ошибки в уравнениях и числовых выражениях.

1. «Два неодинаковых натуральных числа равны между собой» Решим систему двух уравнений: х+2у=6, (1) у=4- х /2 (2) Сделаем это подстановкой у из 2го уравнения в 1, получаем х+8-х=6, откуда 8=6 Где же ошибка???

2. «Отрицательное число больше положительного». Возьмем два положительных числа а и с. Сравним два отношения: а/- c и -а/ c Они равны, так как каждое из них равно –(а/с). Можно составить пропорцию: a /- c= - a / c Но если в пропорции предыдущий член первого отношения больше последующего, то предыдущий член второго отношения также больше своего последующего. В нашем случае а>-с, следовательно, должно быть –а>с, т.е. отрицательное число больше положительного. Где ошибка???

3.Любое число a равно меньшему числу b Начнём с равенства: a=b+c Умножим обе его части на a-b , получим: a²-ab = ab+ac-b²-bc Перенесём ac в левую часть: a²-ab-ac = ab-b²-bc и разложим на множители: a (a-b-c) =b (a-b-c) Разделив обе части равенства на a-b-c , найдём a=b что и требовалось доказать.

4.Уравнение x-a=0 не имеет корней Дано уравнение: x-a=0 Разделим всё на x-a , получим: 1=0 Это равенство неверное, следовательно исходное уравнение не имеет корней.

5.Вес слона равен весу комара. Пусть х – вес слона, а у – вес комара. Обозначим сумму этих весов 2п, получим х+у=2п. Из этого равенства можно получить еще два: х – 2п = -у и х = -у + 2п. Перемножим почленно эти два равенства: х 2 – 2пх + п 2 =у 2 – 2пу + п 2 или (х – п) 2 = (у – п) 2 . Извлекая квадратный корень из обеих частей последнего равенства, получим: х – п = у – п или х=у, т.е. вес слона равен весу комара! В чем тут дело?

ГЕОМЕТРИЧЕСКИЕ СОФИЗМЫ Геометрические софизмы – это умозаключения или рассуждения, обосновывающие какую-нибудь заведомую нелепость, абсурд или парадоксальное утверждение, связанное с геометрическими фигурами и действиями над ними. 1. « Спичка вдвое длиннее телеграфного столба» Пусть, а дм- длина спички и b дм - длина столба. Разность между b и a обозначим через c . Имеем b - a = c , b = a + c . Перемножаем два эти равенства по частям, находим: b 2 - ab = ca + c 2 . Вычтем из обеих частей bc . Получим: b 2 - ab - bc = ca + c 2 - bc , или b (b - a - c) = - c (b - a - c), откуда b = - c , но c = b - a , поэтому b = a - b , или a = 2b. Где ошибка???

2.Задача о треугольнике Дан прямоугольный треугольник 13×5 клеток, составленный из 4 частей. После перестановки частей при визуальном сохранении изначальных пропорций появляется дополнительная, не занятая ни одной частью, клетка. Откуда она берется?

Утверждение легко проверить вычислениями.

3. Исчезающий квадрат Большой квадрат составлен из четырёх одинаковых четырёхугольников и маленького квадрата. Если четырёхугольники развернуть, то они заполнят площадь, занимаемую маленьким квадратом, хотя площадь большого квадрата визуально не изменится.

Софизм Аристотеля Все окружности имеют одинаковую длину. Ведь при оборачивании двух окружностей с разными диаметрами ОА 1 и ОА 2 , каждая из них за один оборот спрямляется на одинаковый отрезок OO 1

Для выявления ошибки построен чертеж, показывающий, какую на самом деле траекторию проходят различные точки окружности, и становится очевидной ошибка доказательстве. Точки А 1 и А 2 во время движения колеса описывают кривые разной длины, их называют циклоидальными кривыми.

ПРОЧИЕ СОФИЗМЫ Кроме математических софизмов, существует множество других, например: логические, терминологические, психологические и т.д. Понять абсурдность таких утверждений проще, но от этого они не становятся менее интересными. Очень многие софизмы выглядят как лишенная смысла и цели игра с языком; игра, опирающаяся на многозначность языковых выражений, их неполноту, недосказанность, зависимость их значений от контекста и т.д. Эти софизмы кажутся особенно наивными и несерьезными. «Полупустое и полуполное » «Полупустое есть то же, что и полуполное. Если равны половины, значит, равны и целые. Следовательно, пустое есть то же, что и полное». «Чётное и нечётное» «5 есть 2 + 3 («два и три»). Два - число чётное, три - нечётное, выходит, что пять - число и чётное и нечётное. Пять не делится на два, также, как и 2 + 3, значит, оба числа не чётные!» «Лекарства» «Лекарство, принимаемое больным, есть добро. Чем больше делать добра, тем лучше. Значит, лекарств нужно принимать как можно больше».

«Самое быстрое существо не способно догнать самое медленное» Быстроногий Ахиллес никогда не настигнет медлительную черепаху. Пока Ахиллес добежит до черепахи, она продвинется немного вперед. Он быстро преодолеет и это расстояние, но черепаха уйдет еще чуточку вперед. И так до бесконечности. Всякий раз, когда Ахиллес будет достигать места, где была перед этим черепаха, она будет оказываться хотя бы немного, но впереди. «Нет конца» Движущийся предмет должен дойти до половины своего пути прежде, чем он достигнет его конца. Затем он должен пройти половину оставшейся половины, затем половину этой четвертой части и т.д. до бесконечности. Предмет будет постоянно приближаться к конечной точке, но так никогда ее не достигнет.

« Куча» Одна песчинка не есть куча песка. Если n песчинок не есть куча песка, то и n+1 песчинка - тоже не куча. Следовательно, никакое число песчинок не образует кучу песка. «Может ли всемогущий маг создать камень, который не сможет поднять?» Если не может - значит, он не всемогущий. Если может - значит, всё равно не всемогущий, т.к. он не может поднять это камень. «Равен ли полный стакан пустому?» Да. Проведем рассуждение. Пусть имеется стакан, наполненный водой до половины. Тогда можно сказать, что стакан, наполовину полный равен стакану, наполовину пустому. Увеличивая обе части равенства вдвое, получим, что стакан полный равен стакану пустому.

«Софизм Эватла » Эватл брал уроки софистики у софиста Протагора под тем условием, что гонорар он уплатит только в том случае, если выиграет первый процесс. Ученик после обучения не взял на себя ведения какого-либо процесса и потому считал себя вправе не платить гонорара. Учитель грозил подать жалобу в суд, говоря ему следующее: "Судьи или присудят тебя к уплате гонорара или не присудят. В обоих случаях ты должен будешь уплатить. В первом случае в силу приговора судьи, во втором случае в силу нашего договора". На это Эватл отвечал: "Ни в том, ни в другом случае я не заплачу. Если меня присудят к уплате, то я, проиграв первый процесс, не заплачу в силу нашего договора, если же меня не присудят к уплате гонорара, то я не заплачу в силу приговора суда". (Ошибка становится ясной, если мы раздельно поставим два вопроса: 1) должен ли Эватл платить или нет и 2) выполнены ли условия договора или нет.) «Софизм Кратила » Диалектик Гераклит, провозгласив тезис "все течет", пояснял, что в одну и ту же реку (образ природы) нельзя войти дважды, ибо когда входящий будет входить в следующий раз, на него будет течь уже другая вода. Его ученик Кратил, сделал из утверждения учителя другие выводы: в одну и ту же реку нельзя войти даже один раз, ибо пока ты входишь, она уже изменится.

Заключение. О математических софизмах можно говорить бесконечно много, как и о математике в целом. Изо дня в день рождаются новые парадоксы, некоторые из них останутся в истории, а некоторые просуществуют один день. Софизмы есть смесь философии и математики, которая не только помогает развивать логику и искать ошибку в рассуждениях. Буквально вспомнив, кто же такие были софисты, можно понять, что основной задачей было постижение философии. Но, тем не менее, в нашем современном мире, если и находятся люди, которым интересны софизмы, в особенности математические, то они изучают их как явление только со стороны математики, чтобы улучшить навыки правильности и логичности рассуждений.

Понять софизм как таковой (решить его и найти ошибку) получается не сразу. Требуются определенный навык и смекалка. Развитая логика мышления может пригодиться в жизни. Софистика-это целая наука, а именно математические софизмы - это лишь часть одного большого течения. Исследовать софизмы действительно очень интересно и необычно. Порой в них рассуждения кажутся безукоризненными! Благодаря софизмам можно научиться искать ошибки в рассуждениях других, научится грамотно строить свои рассуждения и логические объяснения.
















Title="Пример 10.Из двух неравных чисел первое всегда больше второго Пусть a и b – произвольные числа и a ≠ b. Имеем:(a – b)2 > 0, т.е. a2 – 2ab – b2 > 0, или a2 + b2 > 2ab.К обеим частям этого неравенства прибавим – 2b2. Получим:a2 – b2 > 2ab – 2b2, или (…">








1 из 23

Презентация на тему: Математические софизмы

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Что такое софизм? Правильно понятая ошибка – это путь к открытиюИ.П. Павлов Софизм (от греч. sophisma – уловка, выдумка, головоломка), формально кажущееся правильным, но по существу ложное умозаключение, основанное на преднамеренно неправильном подборе исходных положений. Каков бы ни был софизм, он обязательно содержит одну или несколько замаскированных ошибок. Особенно часто в математических софизмах выполняются «запрещённые» действия или не учитываются условия применимости теорем, формул и правил. Иногда рассуждения ведутся с использованием ошибочного чертежа или опираются на приводящие к ошибочным заключениям «очевидности». Встречаются софизмы, содержащие и другие ошибки.

№ слайда 3

Описание слайда:

В истории развития математики софизмы играли существенную роль. Они способствовали повышению строгости математических рассуждений и содействовали более глубокому уяснению понятий и методов математики. Роль софизмов в развитии математики сходна с той ролью, какую играют непреднамеренные ошибки в математических исследованиях, допускаемые даже выдающимися математиками. Именно уяснение ошибок в математических рассуждениях часто содействовало развитию математики. Пожалуй, особенно поучительна в этом отношении история аксиомы Евклида о параллельных прямых. Сформулировать эту аксиому можно так: через данную точку, лежащую вне данной прямой, можно провести не более одной прямой, параллельной данной (что одну прямую, параллельную данной, можно провести – это доказывается). Это утверждение на протяжении более чем двух тысяч лет пытались доказать, вывеси из остальных аксиом геометрии, но все попытки не увенчались успехом. Полученные «доказательства» оказались ошибочными. И всё же, несмотря на ошибочность этих «доказательств», они принесли большую пользу развитию геометрии. Можно сказать, что они подготовили одно из величайших достижений в области геометрии и всей математики – создание неевклидовой геометрии. Честь разработки новой геометрии принадлежит нашему великому соотечественнику Н.И. Лобачевскому и венгерскому математику Яношу Бойяи. Н.И. Лобачевский и сам сначала пытался доказать аксиому параллельных, но скоро понял, что этого сделать нельзя. И путь, идя которым Лобачевский убедился в этом, привёл его к созданию новой геометрии. Этот замечательный вклад в математику был одним из тех, которые прославили русскую науку.

№ слайда 4

Описание слайда:

Разбор софизмов прежде всего развивает логическое мышление, то есть прививает навыки правильного мышления. Обнаружить ошибку – это значит осознать её, а осознание ошибки предупреждает от повторения её в других математических рассуждениях. Что особенно важно, разбор софизмов помогает сознательному усвоению изучаемого материала, развивает наблюдательность, вдумчивость и критическое отношение к тому, что изучается. Математические софизмы приучают внимательно и настороженно продвигаться вперёд, тщательно следить за точностью формулировок, правильностью записей и чертежей, за допустимостью обобщений. Всё это нужно и важно. Наконец, разбор софизмов увлекателен. Чем труднее софизм, тем большее удовлетворение доставляет его анализ. Чем полезны софизмы и что они дают?

№ слайда 5

Описание слайда:

№ слайда 6

Описание слайда:

Алгебраические софизмы Вот некоторые результаты решения софизмов: (для подробного просмотра нажмите на выбранную строку) Пример 1.1 р. = 10 000 к. Пример 2.5 = 6 Пример 3.4 = 8 Пример 4.2 · 2 = 5 Пример 5.5 = 1 Пример 6.4 = 5 Пример 7.Любое число равно его половине Пример 8.Расстояние от Земли до Солнца равно толщине волоска Пример 9.Любое число = 0 Пример 10.Из двух неравных чисел первое всегда больше второго

№ слайда 7

Описание слайда:

Пример 1.1 р. = 10 000 к. Возьмём верное равенство: 1 р. = 100 к. Возведём его по частям в квадрат. Мы получим: 1 р. = 10 000 к.************************************************************************************Вопрос: В чём ошибка?Ответ (нажмите «Enter»): Возведение в квадрат величин не имеет смысла. В квадрат возводятся только числа.

№ слайда 8

Описание слайда:

Попытаемся доказать, что 5 = 6. С этой целью возьмём числовое тождество: 35 + 10 – 45 = 42 + 12 – 54. Вынесем общие множители левой и правой частей за скобки. Получим: 5 (7 + 2 – 9) = 6 (7 + 2 – 9). Разделим обе части этого равенства на общий множитель (заключённый в скобки).Получаем 5 = 6.************************************************************************************Вопрос: В чём ошибка?Ответ (нажмите «Enter»): Общий множитель (7 + 2 – 9) равен 0, а делить на 0 нельзя.

№ слайда 9

Описание слайда:

№ слайда 10

Описание слайда:

Пример 4.2 · 2 = 5 Имеем числовое равенство (верное): 4: 4 = 5: 5. Вынесем за скобки в каждой части его общий множитель. Получим: 4 (1: 1) = 5 (1: 1).Числа в скобках равны, поэтому 4 = 5, или 2 · 2 = 5.************************************************************************************Вопрос: Где здесь ошибка?Ответ (нажмите «Enter»): Ошибка допущена в вынесении общего множителя за скобки в левой и правой частях тождества 4: 4 = 5: 5.

№ слайда 11

Описание слайда:

Из чисел 5 и 1 по отдельности вычтем одно и то же число 3.Получим числа 2 и – 2. При возведении в квадрат этих чисел получаются равные числа 4 И 4. Значит, должны быть равны и исходные числа 5 и 1. ************************************************************************************Вопрос: В чём ошибка?Ответ (нажмите «Enter»): Из равенства квадратов двух чисел не следует, что сами эти числа равны.

№ слайда 12

Описание слайда:

Имеем числовое равенство (верное):16 – 36 = 25 – 45; 16 – 36 + 20,25 = 25 – 45 + 20,25;(4 – 4,5)2 = (5 – 4,5)2; 4 – 4,5 = 5 – 4,5; 4 = 5. ************************************************************************************Вопрос: В чём ошибка?Ответ (нажмите «Enter»): (4 – 4,5)2 = (5 – 4,5)2 ↔ |4 – 4,5| = |5 – 4,5|. Пример 6.4 = 5

№ слайда 13

Описание слайда:

Пример 7.Любое число равно его половине Возьмём два равных числа a и b, a = b. Обе части этого равенства умножим на a и затем вычтем из произведений по b2. Получим:a2 – b2 = ab – b2, или (a + b) (a – b) = b (a – b).Отсюда a + b = b, или a + a = a, так как b = a.Значит, 2a = a, a = . ************************************************************************************Вопрос: В чём ошибка?Ответ (нажмите «Enter»): Нельзя делить на (a – b), так как (a – b) = 0.

№ слайда 14

Описание слайда:

Пример 8.Расстояние от Земли до Солнца равно толщине волоска Пусть a (м) – расстояние от Земли до Солнца, а b (м) – толщина волоска. Среднее арифметическое их обозначим через v. Имеем:a + b = 2v, a = 2v – b, a – 2v = – b. Перемножив по частям два последних равенства, получаем:a2 – 2av = b2 – 2bv. Прибавим к каждой части v2. Получим:a2 – 2av + v2 = b2 – 2bv + v2, или (a – v)2 = (b – v)2, т.е. (a – v) = (b – v), и, значит, a = b. ************************************************************************************Вопрос: Где здесь ошибка?Ответ (нажмите «Enter»): Ошибка как в примере №6.

№ слайда 15

Описание слайда:

Пример 9.Любое число = 0 Каково бы ни было число a, верны равенства:(+a)2 = a2 и (– a)2 = a2. Следовательно, (+a)2 = (– a)2, а значит, +a = – a, или 2a = 0, и поэтому a = 0. ************************************************************************************Вопрос: В чём ошибка?Ответ (нажмите «Enter»):

№ слайда 16

Описание слайда:

Пример 10.Из двух неравных чисел первое всегда больше второго Пусть a и b – произвольные числа и a ≠ b. Имеем:(a – b)2 > 0, т.е. a2 – 2ab – b2 > 0, или a2 + b2 > 2ab.К обеим частям этого неравенства прибавим – 2b2. Получим:a2 – b2 > 2ab – 2b2, или (a + b) (a – b) > 2b (a – b). После деления обеих частей на (a – b) имеем:a + b > 2b, откуда следует, что a > b. ************************************************************************************Вопрос: Где допущена ошибка?Ответ (нажмите «Enter»): При делении обеих частей неравенства (a + b) (a – b) > 2b (a – b) на (a – b) знак неравенства может измениться на противоположный (если a – b < 0).

№ слайда 17

Описание слайда:

Геометрические софизмы Вот некоторые примеры геометрических софизмов: (для подробного просмотра нажмите на выбранную строку) Пример 1.Загадочное исчезновение. Пример 2.Земля и апельсин Пример 4.Два перпендикуляра Пример 5.«Новое доказательство» теоремы Пифагора

№ слайда 18

Описание слайда:

Пример 1.Загадочное исчезновение У нас есть произвольный прямоугольник, на котором начерчено 13 одинаковых линий на равном расстоянии друг от друга, так, как показано на рисунке 1. Теперь «разрежем» прямоугольник прямой MN, проходящей через верхний конец первой и нижний конец последней линии. Сдвигаем обе половины вдоль по этой линии и замечаем, что линий вместо 13 стало 12. Одна линия исчезла бесследно. ************************************************************************************Вопрос: Куда исчезла 13-я линия?Ответ (нажмите «Enter»):

№ слайда 19

Описание слайда:

Пример 2.Земля и апельсин Вообразим, что земной шар обтянут по экватору обручем и что подобным же образом обтянут и апельсин по его большому кругу. Далее вообразим, что окружность каждого обруча удлинилась на 1м. Тогда обручи отстанут от поверхности тел и образуют некоторый зазор************************************************************************************Вопрос: Где зазор будет больше: у апельсина или у Земли?Ответ (нажмите «Enter»): Пусть длина окружности земного шара = C, а апельсина с метрам. Тогда радиус Земли R = C/2 и радиус апельсина r = c/2 . После прибавки к радиусам 1 метра окружность обруча у Земли будет C + 1, а у апельсина c + 1. Радиусы их соответственно будут: (C + 1)/2 и (c + 1)/2 . Если из новых радиусов вычтем прежние, то получим в обоих случаях одно и то же.(C + 1)/2 - C/2 = 1/2 - для Земли, (c + 1)/2 - c/2 = 1/2 - для апельсина Итак, у Земли и у апельсина получается один и тот же зазор в 1/2 метра (примерно 16 см).

№ слайда 20

Описание слайда:

В дне деревянного судна во время плавания случилась прямоугольная пробоина в 13 см длины и 5 см ширины, т.е. площадь пробоины = 65 см2. Судовой плотник взял квадратную дощечку со стороной квадрата 8 см (т.е. площадь = 64 см2), разрезал её прямыми линиями на четыре части A, B, C, D так, как показано на рисунке 2, а затем сложил их так, что получился прямоугольник, как раз соответствующий пробоине, см. рисунок 3. Этим прямоугольником он и заделал пробоину. Вышло, что плотник сумел квадрат в 64 см2 обратить в прямоугольник с площадью 65 см2.*******************************************************Вопрос: Как такое могло получиться?Ответ (нажмите «Enter»): Легко видеть, что получившиеся при разрезании квадрата треугольники A и B равны между собой. Также равны и трапеции C, D. Меньшее основание трапеций и меньший катет треугольников равны 3 см и поэтому должны совпасть при совмещении треугольника A с трапецией C и треугольника B с трапецией D. В чём же секрет? Дело в том, что точки G, H, E не лежат на одной прямой, tg EHK = 8/3 , а tg HGJ = 5/2. Так как 8/3 – 5/2 = 1/6 > 0, то EHK > HGJ. Точно так же линия EFG – ломанная. Площадь полученного прямоугольника действительно равна 65 см2, но в нём имеется щель в виде параллелограмма, площадь которого в точности равна 1 см2. Наибольшая ширина щели равна 5 – 3 – (5·3)/8 = 1/8 см. Таким образом плотнику всё равно придётся замазывать небольшую щель.

№ слайда 21

Описание слайда:

Пример 4. Два перпендикуляра Попытаемся «доказать», что через точку, лежащую вне прямой, к этой прямой можно провести два перпендикуляра. С этой целью возьмём треугольник ABC (рисунок 4). На сторонах AB и BC этого треугольника, как на диаметрах, построим полуокружности. Пусть эти полуокружности пересекаются со стороной AC в точках E и D. Соединим точки E и D прямыми с точкой B. Угол AEB прямой, как вписанный, опирающийся на диаметр; угол BDC также прямой. Следовательно, BE AC и BD AC. Через точку B проходят два перпендикуляра к прямой AC. ****************************************************Вопрос: В чём ошибка?Ответ (нажмите «Enter»): Рассуждения опирались на ошибочный чертёж. В действительности полуокружности пересекаются со стороной AC в одной точке, т.е. BE совпадает с BD.

Описание слайда:

«Аванта +. Математика». – Москва, изд. «Аванта +»,1998.«БЭКМ – 2007». – Москва, 2007. Игнатьев Е.И. «Математическая смекалка. Занимательные задачи, игры, фокусы, парадоксы». – Москва, изд. «Омега»,1994.Нагибин Ф.Ф., Канин Е.С. «Математическая шкатулка». – Москва, изд. «Просвещение»,1988.

Загрузка...
Top